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Periodic signal in additive noise :
an old problem but with many

modern applications

• The beginning: meteorology, physical processes related to

planetary motion

– A. Shuster, “On lunar and solar periodicities of

earthquakes,” Proc. Roy. Soc., v. 61, pp. 455-465,

1897.

– A. Shuster, “On the investigation of hidden

periodicities with application to a supposed 26 day

period of meteorological phenomena,” Terr. Magn.,

v. 3, pp. 13-41, 1898.

– The periodogram. A method for illuminating the

presence of periodic functions in noisy observations.

As a quick reminder, given a finite sequence of real or

complex numbers XN = {x0, x1, . . . , xN−1}, the

discrete Fourier transform of XN is

FN(λ) =
N−1∑

t=0

xk exp(iλt) (1)

The usual periodogram is defined simply as

IN(λ) =
1

2πN
|FN(λ)|

2. (2)



Periodogram Illustration

Yt = A cos(πt/16) + ξt
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Figure 1: Time series Yt = A cos(πt/16) + ξt, σξ = 1. Left:
A = .5/512. Right: A = 2.5/512.
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Figure 2: Periodograms of Yt = A cos(πt/16) + ξt, σξ = 1 based
on 1 FFT of length 512. Left: A = .5/512. Right: A = 2.5/512.



Periodogram and Periodic Signals

• The periodogram is the starting place for an important

estimator of spectral density of a stationary process.

When smoothed in the correct manner, this smoothed

periodogram is an asymptotically consistent estimator of

spectral density. See B and D. The modern topics of

kernel smoothing seems to have originated here.

• Modern applications of periodic signals in additive noise.

1. Signal processing of sonar and radar signals.

2. Coding and decoding of communication signals.

3. Meteorlogical, climatological, economic processes;

• Spectral meaning of periodic signals: Correlation

functions r(τ ) of stationary sequences are Fourier

transforms (Herglotz)

r(τ ) =

∫ 2π

0

exp(iλτ )dF (λ) (3)

where F (λ) is a bounded, non-decreasing function on

[0, 2π). (equivalently a non negative measure). If λ is a

jump point F (λ+)− F (λ) > 0, then the process will have

a periodic component with frequency λ.



Solar radiation I
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Figure 3: (Top) Solar radiation time series. (Bottom) Sample pe-

riodic mean of radiation series using T = 24. The error bars
are the α = .05 confidence limits determined by the student’s

t with sample size Np = 40. From Taconite Inlet Project
(http:/climate4/geo.umass.edu/TILPHTMLhomepage.html.)

The sample periodic mean for period T is computed by

m̂N(t) =
1

N

N−1∑

p=0

Xt+pT , t = 1, 2, ..., T (4)



Solar radiation II

0 100 200 300 400 500 600 700 800 900 1000
−300

−200

−100

0

100

200
deltarad unscaled deviation from periodic mean; missing(red) set to 0

0 5 10 15 20 25
0

50

100

150
Periodic standard deviations, No. periods = 40, alpha = 0.05

Figure 4: (Top) Deviation around sample periodic mean. (Bottom) Sam-
ple periodic standard deviation of radiation series using T = 24. The

error bars are the α = .05 confidence limits determined by the chi-
squared distribution with Np − 1 = 39 degrees of freedom.

The sample periodic variance is given by

S2
N(t) =

1

N − 1

N−1∑

p=0

Y 2
t+pT , t = 1, 2, ..., T (5)

where Yt = Xt − m̂N(t) is the deviation of Xt from the sample

periodic mean m̂N(t).

So this series has a visually clear (suggesting very significant)

periodicity in it’s mean and variance. This motivates the

examination of processes with some sort of structural time

periodicity.



Processes invariant under T -shifts

Strict sense A process Xt(ω) : Ω −→ C or R is called periodically
stationary with period T if for every n, collection of times t1, t2, ..., tn
in Z or R, collection of Borel sets A1, A2, ..., An of C or R,

Pr[Xt1+T ∈ A1, Xt2+T ∈ A2, ..., Xtn+T ∈ An]

= Pr[Xt1 ∈ A1, Xt2 ∈ A2, ..., Xtn ∈ An]. (6)

and there are no smaller values of T > 0 for which (6) holds.

Synonyms for periodically stationary include periodically
non-stationary, cyclostationary (think of cyclically stationary),

processes with periodic structure, and a few others. If T = 1, the
process is strictly stationary.

Weak sense A second order process Xt ∈ L2(Ω,F , P ) with t ∈ Z is
called periodically correlated (or wide-sense cyclostationary) with

period T if

m(t) = E{Xt} = m(t+ T )∀t, and (7)

R(s, t) = E{XsXt} = R(s+ T, t+ T )∀s, t ∈ Z (8)

and there are no smaller values of T > 0 for which (7) and (8) hold. If

T = 1, the process is weakly (or wide-sense) stationary.

Periodically correlated processes have a spectral theory that is an

extension of the spectral theory for stationary processes.
Just as ARMA models provide parametric models of stationary
processes, the PARMA models provide parametric models for

periodically correlated processes.



Mean and covariance for PC processes

The periodicity leads to Fourier series representations

m(t) = E{Xt} =

T−1∑

k=0

mke
i2πkt/T

and

R(t+ τ, t) = E{Xt+τXt} =
T−1∑

k=0

ei2πkt/TBk(τ)

where

mk =
1

T

T−1∑

t=0

m(t)e−i2πkt/T

and

Bk(τ) =
1

T

T−1∑

t=0

R(t+ τ, t)e−i2πkt/T .

Note Xt is weakly stationary iff mt ≡ m and R(t+ τ, t) ≡ R(τ) and

these happen iff for all k 6= 0, both mk = 0 and Bk(τ) ≡ 0.

Estimation

̂̃mk,N =
1

NT

NT−1∑

j=0

Xje
−i2πkj/T =

1

T

T−1∑

t=0

m̂N(t)e
−i2πkt/T

R̂N(t+ τ, t) =
1

N

N−1∑

k=0

[Xt+kT+τ − m̂N(t+ τ)][Xt+kT − m̂N(t)]

B̂k,NT (τ) =
1

NT

∑

t∈INT,τ

[Xt+τ − m̂N (t+ τ)][Xt − m̂N(t)]e
−i2πkt/T



PARMA Sequences

Definition 0.1 Xt is called PARMA(p, q) with period T if it

satisfies, together with orthonormal sequence of shocks ξt, all t ∈ Z, a
linear difference equation having time-periodic coefficients,

Xt =

p∑

j=1

φj(t)Xt−j +

q∑

k=1

θk(t)ξt−k + σ(t)ξt

where φj(t) = φj(t+ T ), θk(t) = θk(, t+ T ), σ(t) = σ(t+ T ) for every

j = 1, . . . , p, k = 1, . . . , q, t ∈ Z.

Sometimes we write

Φ(B, t)Xt = Θ(B, t)ξt

where

Φ(B, t) = 1− φ1(t)B − · · · − φp(t)B
p

Θ(B, t) = σ(t) + θ1(t)B + . . . θq(t)B
q

and σ(t) = θ0(t).
Special cases PAR and PMA

Θ(z, t) = θ0(t) = σ(t) ⇔ PAR(p)

Φ(z, t) = 1 ⇔ PMA(q)

Theorem (Gladyshev 1961) The sequence Xt is PC-T iff the blocks
~X(p), where [ ~X(p)]j = Xj+pT , are vector stationary w.r.t block index p.



Proposition A univariate PARMA(p,q) system can be expressed as a
T-variate VARMA(p’,q’)

Φ(B)Xn = Θ(B)Ξn.

Obtain the claim with

Xn = [XnT , XnT−1, . . . , XnT−T+1]
′ , Ξn = [ξnT , ξnT−1, . . . ξnT−T+1]

′ .

Φ(z) = Φ0 −Φ1z − · · · −Φp′z
p′ p′ = 1 + [p/T ]

Θ(z) = Θ0 +Θ1z + · · ·+Θq′z
q′ q′ = 1 + [q/T ]

Cov(Ξm,Ξn) = δm−nIT

where

Φ0 =




1 −φ1(T ) −φ2(T ) . . . −φT−1(T )
0 1 −φ1(T − 1) . . . −φT−2(T − 1)

0 0 1 . . . −φT−3(T − 2)
...

...
...

...
...

0 0 0 . . . 1



,

Φ1 =




φT (T ) φT+1(T ) . . . φ2T−1(T )
φT−1(T − 1) φT (T − 1) . . . φ2T−2(T − 1)

φT−2(T − 2) φT−1(T − 2) . . . φ2T−3(T − 2)
...

...
...

...

φ1(1) φ2(1) . . . φT (1)




and generally Φj, [Φj]mm′ = φjT+m′−m(T −m+ 1). The matrices
Θj, j = 0, 1, . . . , q′ are of the same form as Φj except the leading

coefficients in the jth row of Θ0 is θ0(T − j + 1).

We note the conditions on the parameters that cause Xn to be

stationary are identical to those that cause Xt to be PC.



Fitting PARMA Models

Identification in the stationary case refers to the determination of

the model order parameters, p and q, which provide an adequate
fit to the data. Initial guesses of p, q are usually suggested from

the identification tools.

Parameter estimation refers to the process of estimating the values

of the parameters in the chosen representation. For PAR models
we can use a periodic version the the Yule-Walker equations. For
general PARMA we use non-linear optimization methods to

obtain maximum likelihood or least squares estimates.

Diagnostic checking in the stationary case consists of determining

if the residuals (based on some parameter estimates) are
consistent with white noise. If not, then modifications to p and q

are made based essentially on the application of the identification
step to the residuals (determine what structure is not yet

explained) and estimation is re-run. For PARMA, we wish to
determine if the residuals are consistent with PC white noise,
and if not, then identification is performed again to determine

what structure is not yet explained.

At the top level, the same paradigm is used as for ARMA sequences.



Maximum Likelihood Estimation and the

Innovations Algorithm

In order to obtain maximum likelihood estimates of model parameters
Φ,Θ (based on the sample Xt0;n = (Xt0, Xt0+1, . . . , Xt0+n−1)

′) we use a

numerical optimization method to maximize

L(Φ,Θ|Xt0;n) = (2π)−N/2|RX |
−1/2 exp

(
−
1

2
X′

t0;n
R−1

X Xt0;n

)

over parameter values. This is the general idea; there are more details.
Treating the data Xt0;n as fixed, we code the computation of

L(Φ,Θ|Xt0;n) with Φ,Θ as variables. The code must include the
computation of RX from the parameters Φ,Θ. But to avoid

computing the inverse R−1
X the Cholesky decomposition for RX is used

assuming for now that RX is positive definite (thus invertible). The

Cholesky decomposition, which is exactly the innovations algorithm,
gives an upper triangular and invertible E with E−1RX(E

−1)′ = I.
Thus the likelihood function is

L(Φ,Θ|Xt0;n) = (2π)−N/2|E|−1 exp

(
−
1

2
e′t0;nE

′R−1
X Eet0;n

)

= (2π)−N/2|E|−1 exp

(
−
1

2
e′t0;net0;n

)

where et0;n = E−1Xt0;n. When the optimization stops, the vector et0;n
are considered the residuals.
With L(Φ,Θ|Xt0;n) coded, and Xt0;n fixed, we pass the function to an

optimization program. In seeking an optimizing argument, it can
develop parameters that do not yield a positive definite RX and the
program stops. We made a variant of the Cholesky decomposition

using MATLAB functions to get an E that eliminates data points
that are linearly dependent on previous ones and we remove their

consideration in the L calculation. I.E., we reduce X ′ so that RX ′ is
positive definite.

We use the Ansley device to further speed computation.



Ansley Method for PARMA

For arbitrary t0, denote Xt0;n as a sample from a PARMA system on

the interval

Int0 = {t0, t1, . . . , t0 + n− 1} = I t0+m−1
t0 ∪ I t0+n−1

t0+m ,

where m = max(p, q), and then setting

Wt =

{
Xt t ∈ Imt0
φ(B, t)Xt t ∈ Int0+m

(9)

defines a new observation vector Wt0;n = AΦXt0;n where matrix AΦ is
upper triangular with detAΦ = 1.
Since the Jacobian of the transformation AΦ is unity, we have

L(Φ,Θ|Xt0;n) = L(Φ,Θ|Wt0;n)

and the latter has computational advantages connected to the form of
the covariance RW , details of which will be given subsequently.
Assuming for now that RW is positive definite (thus invertible) with

Cholesky decomposition RW = EE ′ where E is upper triangular and
invertible, then the likelihood function is

L(Φ,Θ|Wt0;n) = (2π)−N/2|RW |−1/2 exp

(
−
1

2
W′

t0;nR
−1
W Wt0;n

)

= (2π)−N/2|E|−1 exp

(
−
1

2
e′t0;nE

′R−1
W Eet0;n

)

= (2π)−N/2|E|−1 exp

(
−
1

2
e′t0;net0;n

)
(10)

where et0;n = E−1Wt0;n.

The form of the matrix RW is the basis for the computational gain.
The first application of Ansley’s transformation to PARMA sequences

by Vecchia [26, 25] focuses on the conditional version which ignores
the first m = max(p, q) samples in order to avoid the cumbersome

calculation of RW off the square I t0+n
t0+m+1 × I t0+n

t0+m+1.
The full calculation of RW , an extension of method 3 in Brockwell and

Davis [6] was first presented by Li and Hui [9].



Fourier Parameterization

There is an alternative parameterization (or re-casting) of a PARMA

system, introduced by Jones and Breslford [?], that can sometimes
substantially reduce the number of parameters required to represent a

PARMA system. This method makes use of the representation of the
periodically varying parameters by Fourier series

φj(t) =
T−1∑

n=0

ajn exp(i2πnt/T ), j = 1, ..., p

θk(t) =

T−1∑

n=0

bkn exp(i2πnt/T ) k = 0, ..., q

where we identify θ0(t) = σ2
t . Observe that the mapping between the

{φj(t), θk(t)} and the {ajn, bkn} is one-to-one (DFT), and denote the

later as A,B. Then we can maximize

L(Φ(A),Θ(B)|Wt0;n)

with respect to A,B, and then transform the solution to Φ,Θ. The
Fourier series parameterization permits us to reduce the total number

of parameters by constraining some frequencies to have zero
amplitude. Often this can be justified by physical considerations that

constrain the time dependence to be smooth.
This parameterization was first used for PARMA by Vecchia.



Model Selection by Penalized Likelihood

Sometimes there are several sets of model parameters that give

reasonable fits. The AIC and BIC methods compute penalties for the
number of parameters used and thus encourage the simplicity (or

parsimony) of the selected fit.
We use the following to calculate the penalized likelihoods (k is the

total number of parameters in the parameter set Φ,Θ, N is the
number of linearly independent samples). Use Choi for all of these.

AIC(k) = −2 lnL
(
Φ̂, Θ̂

)
+ 4k

BIC(k) = −2 lnL
(
Φ̂, Θ̂

)
+ 2k logN



AR, PAR, SAR and SPAR
AR Sequence: Xt is called AR(p) if it satisfies, together with

orthonormal sequence of shocks ξt, t ∈ Z, a linear equation

Xt =

p∑

j=1

φjXt−j + σξt t ∈ Z (11)

Defining ΦAR(B) = 1− φ1B − φ2B
2 − · · · − φpB

p, we can express
(11) as

ΦAR(B)Xt = σξt t ∈ Z.

Under parameter constraints, AR sequences are stationary.
Precisely, (B D) show that if ΦAR(z) 6= 0 for |z| ≤ 1, then the Xt

is stationary and has spectral density

fX(λ) =
σ2

2π

1

|φ(e−iλ)|2
.

PAR Sequence: Xt is called PAR(p) with period T if it satisfies,
together with orthonormal sequence of shocks ξt, t ∈ Z, a linear

equation having time-periodic coefficients,

Xt =

p∑

j=1

φj(t)Xt−j + σ(t)ξt t ∈ Z (12)

where φj(t) = φj(t+ T ), σ(t) = σ(t+ T ) for every j = 1, . . . , p,
t ∈ Z. Defining ΦPAR(t, B) = 1−

∑p
j=1 φj(t)B

j we can write (12)

as
ΦPAR(t, B)Xt = σ(t)ξt, t ∈ Z.

Under parameter constraints, PAR sequences are periodically

correlated, or PC. Specifically, if Φ(z) is the matrix polynomial
that results from the blocking of Xt into Xn, and if det[Φ(z)] 6= 0

for |z| ≤ 1, then Xn is a stationary vector sequence and has
spectral density

fX(λ) = Φ−1(e−iλ)ΣΦ−1(e−iλ)′



SAR Sequence: A sequence is called seasonal AR or SAR sequence
with S seasons if it satisfies, together with orthonormal sequence

of shocks ξt, t ∈ Z, a linear equation

Xt =

p∑

j=1

φjXt−jS + σξt (13)

or, in other words, (13) can be expressed as

ΦSAR(B)Xt = [1− φ1B
S − φ2B

2S − · · · − φpB
pS]Xt = σξt.

Note that this is just a special case of AR, so under parameter
constraints, SAR sequences are stationary. Precisely, if

ΦSAR(z) 6= 0 for |z| ≤ 1, then the Xt is stationary and has
spectral density of form

fX(λ) =
σ2

2π

1

|φ(e−iSλ)|2
.

SPAR Sequence: combining PAR and SAR A sequence is
called seasonal PAR or SPAR sequence with S seasons and with
period T , if it satisfies, together with orthonormal sequence of

shocks ξt, t ∈ Z, a linear equation having time-periodic
coefficients,

Xt =

p∑

j=1

φj(t)Xt−jS + σ(t)ξt t ∈ Z (14)

where φj(t) = φj(t+ T ), σ(t) = σ(t+ T ) for every j = 1, . . . , p,

t ∈ Z. Defining ΦSPAR(t, B) = 1−
∑p

j=1 φj(t)B
jS we can write

(14) as

ΦSPAR(t, B)Xt = [1−φ1(t)B
S−φ2(t)B

2S−· · ·−φp(t)B
pS]Xt = σ(t)ξt, t ∈ Z.



Fitting AR, PAR, SAR, and SPAR
Models

Identification in the AR case this means determination of the model
order p; but now we have alot more, the orders of the AR, PAR,

SAR, and SPAR parts, the period for PAR, for SPAR and the
number of seasons S. Then the Fourier coefficients of periodic

variations. The main tool is procedure parma ident.

Parameter estimation refers to the process of estimating the values

of the parameters in the chosen representation. We use
MATLAB’s ARMAX for AR and SAR; for PAR, a periodic

Yule-Walker method is possible, but we use PARMSEF.

PARMSEF: OLS fit of PAR to data X1, X2, . . . , XN

That is, numerically minimize Q(A) with respect to the selected
free parameters in A

Q(A) =
N∑

t=p+1

[
Xt −

p∑

j=1

φj(t)Xt−j

]2

where

φj(t) = aj,1 +

[T/2]∑

n=1

aj,2 cos(2πnt/T ) + aj,2n+1 sin(2πnt/T )

and we can take N = T . (Period equals sample size is possible.)

Diagnostic checking use identification tools to determine if the
residuals (based on some parameter estimates) are consistent

with white noise. If not, then modify the model parameters to
attempt a better fit. Order p may be increased, additional active
frequencies may be named.



Nordspot Hourly Electricity
Volumes 2008
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Figure 5: Hours in 1 year = 365 * 24 = 8760



Nordspot Hourly Electricity
Volumes 2008 : Weekdays Only
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Figure 6: Weekday Hours in 1 year = 52 * 24 *5 = 6240



Nordspot Hourly Electricity
Volumes 2008, weekly mean
removed, near hour 4000
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Nordspot Hourly Electricity
Volumes 2008 : Weekdays Only,
weekly mean removed, near hour
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Nordspot Hourly Electricity
Volumes 2008, weekly de-meaned:
subtract successive 7 day sample

means,

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1
x 10

4 hourly volumes for year 2008number of NaN:1 weekly mean removed

Figure 7: Hours in 1 year = 365 * 24 = 8760



Nordspot Hourly Electricity
Volumes 2008, residual from 1st

harmonic
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Identification Tools
• permest computes sample mT (t) with CI based on normal

variates and test for m(t) ≡ m based on one-way ANOVA.

• persigest computes sample σT (t) with CI based on χ2 and test
for σT (t) ≡ σ based on Bartlett’s test for homogeneity of

variances.

• peracf2 computes sample ρT (t, τ) with tests for (a)

ρT (t, τ) = ρT (τ), t = 0, 1, . . . T − 1 and (b)
ρT (t, τ) = 0, t = 0, 1, . . . T − 1.

• perpacf computes sample πn+1(t), t = 0, 1, . . . T − 1 where n is
points between

• acfpacf is the usual acf and pacf under the stationary
assumption. Can be more sensitive for some nonstationary series.
For acf, inner threshold is based on assumption that when ρ = 0,

sample correlation will be approximately normal with variance
1/N . Outer threshold adjusts (Bonferroni) for the number of

hypotheses represented in the acf plot.



Initial Identification
acfpacf : 6 weeks of weekday

lags 0:199
0 20 40 60 80 100 120 140 160 180 200

-1

-0.5

0

0.5

1
hourly volumes acf  n= 720 alpha = 0.05

points between: 0:199
0 20 40 60 80 100 120 140 160 180 200

-1

-0.5

0

0.5

1
hourly volumes pacf  nsamp= 720 alpha = 0.05

Note the strong periodic character of ACF caused by strong periodic

mean. PACF shows strong lag 1,2 and 24 plus others low level lags.



Initial Identification
acfpacf residual from pmean, 6

weeks of weekday

lags 0:199
0 20 40 60 80 100 120 140 160 180 200
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1
wkday hourly volumes acf  n= 720 alpha = 0.05

points between: 0:199
0 20 40 60 80 100 120 140 160 180 200
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1
wkday hourly volumes pacf  nsamp= 720 alpha = 0.05

Note periodic character is removed (greatly diminished) but still strong
lag 1, and weaker lag 2 and 24.



Some peracf2 results

starting time t
0 5 10 15 20 25
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0.2

0.4

0.6

0.8

1
peracf2 test Rho(t,lag) for lag=2 equalpv=4.6554e-09 zeropv=0

(a)

starting time t
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1
peracf2 test Rho(t,lag) for lag=5 equalpv=0.00057207 zeropv=0

(b)



NOTE: If the process is stationary,
ρt+τ,t ≡ ρτ (constatnt wrt t) for all lags τ .

We can test only a finite number.

Initial Identification
Summary of P-values for ρt+τ,t ≡ ρτ and ρt+τ,t ≡ 0 for all t

lag ρt+τ,t ≡ ρτ ρt+τ,t ≡ 0

0 - -

1 2.20e-13 0
2 4.66e-09 0

3 6.93e-06 0
4 9.34e-05 0

5 0.57e-03 0
6 1.27036e-05 0
7 1.75e-03 0

8 8.60e-03 0
9 1.43575e-02 0

10 4.11e-02 0
11 7.02e-02 0

12 7.97e-02 0
13 0.10 0
14 0.169 0

15 0.427 0

Least equalpv bonferroni corrected for 15 lags tried: 3.30e-12
Least zeropv bonferroni corrected for 15 lags tried:0

Conclusion: There are many lags with highly significant time variation. Next: Try
PAR(2) with lags 1 and 2, T=24, 1 freq each which requires 6 parameters; variance
pretty constant so assume it is constant.



acfpacf after parmsef with T=24,
p=2, harmonics 0,1,2

lags 0:199
0 20 40 60 80 100 120 140 160 180 200

-0.5

0
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1
2008 zmse

d
mx24 acf  n= 718 alpha = 0.05

points between: 0:199
0 20 40 60 80 100 120 140 160 180 200

-0.2

-0.1

0

0.1

0.2
2008 zmse

d
mx24 pacf  nsamp= 718 alpha = 0.05

lag 24 seems main thing left so try SAR with S=24



acfpacf after SAR(3) with
Nseasons=24

lags 0:199
0 20 40 60 80 100 120 140 160 180 200

-0.5

0

0.5

1
2008 resids

s
arma acf  n= 718 alpha = 0.05

points between: 0:199
0 20 40 60 80 100 120 140 160 180 200

-0.2

-0.1

0

0.1

0.2
2008 resids

s
arma pacf  nsamp= 718 alpha = 0.05

acfpacf appears consistent with white noise but it smooths over possible
periodic fluctuations



After SAR(3) with Nseasons=24
Summary of P-values for ρt+τ,t ≡ ρτ and ρt+τ,t ≡ 0 for all t

lag ρt+τ,t ≡ ρτ ρt+τ,t ≡ 0

0 - -

1 0.0854177 0.966118
2 0.0103949 0.207861
3 0.121912 0.233742

4 0.089394 0.702302
5 0.0140445 0.152954

6 0.398613 0.093238
7 0.0190652 0.462202

8 0.0137045 0.63041
9 0.27469 0.305066

10 0.769695 0.163351
11 0.0978792 0.2886
12 0.0773322 0.693392

13 0.0427666 0.382873
14 0.331287 0.423264

15 0.200416 0.226003

Least equalpv bonferroni corrected for 15 lags tried:0.15592
Least zeropv bonferroni corrected for 15 lags tried:1

Conclusion: Time variation is substantially reduced. After adjustment
for multiple hypotheses, ρt+τ,t ≡ ρτ for all lags cannot be rejected.
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